Assignment (8)

1. Define the satellite station problem and how can it serve the survey work?
2. S is a satellite station 5.8 m apart from a main station P South from $S . Q$ is another main station at 3086.40 m from P and the measured direction SQ is $296^{\circ} 06^{\prime} 111^{\prime \prime}$. Determine the direction PQ.
3. An occupied station $E 34.6 \mathrm{~m}$ from an inaccessible point B north of $\mathrm{E} . \mathrm{A}, \mathrm{C}$ are on the east from EB and the distances AB, BC are 16.246 km and 19.321 km respectively. If the angles AEC and BEA are $69^{\circ} 14^{\prime} 27^{\prime \prime}, 76^{\circ} 23^{\prime} 06^{\prime \prime}$ respectively. Calculate the angle ABC.
4. The directions observed from a satellite station $\mathrm{S}, 70 \mathrm{~m}$ from a triangulation station C, to the triangulation station A, B, and C are $0^{\circ} 00^{\prime} 00^{\prime \prime}, 71^{\circ} 32^{\prime} 54^{\prime \prime}$ and $301^{\circ} 16^{\prime} 15^{\prime \prime}$, respectively. The lengths of $A B$, and $A C$ are 16.5 km and 25.0 km , respectively. Deduce the angle $A C B$.
5. In a triangulation survey, the station C could not be occupied in a triangle $A B C$, and a satellite station S was established north of C. The angles as given in Table were measured at S using a theodolite.

Pointing on	Horizontal circle reading
A	$14^{\circ} 43^{\prime} 27^{\prime \prime}$
B	$74^{\circ} 30^{\prime} 35^{\prime \prime}$
C	$227^{\circ} 18^{\prime} 12^{\prime \prime}$

Approximate lengths of AC and BC were found by estimation as 17495 m and 13672 m , respectively, and the angle ACB was deduced to be $59^{\circ} 44^{\prime} 53^{\prime \prime}$. Calculate the distance of S from C .
6. S is a satellite station to a triangulation station A at 12 m from A . From S the following bearings were observed:
$\mathrm{A}=0^{\circ} 00^{\prime} 00^{\prime \prime}, \mathrm{B}=143^{\circ} 36^{\prime} 20^{\prime \prime}, \mathrm{C}=238^{\circ} 24^{\prime} 48^{\prime \prime}$ and $\mathrm{D}=307^{\circ} 18^{\prime} 54^{\prime \prime}$
The lengths of lines AB, AC, and AD were measured and found to be 3190.32 m , 4085.15, and 3108.60 m , respectively. Determine the directions of B, C, and D from A.

